论文标题
使用可压缩多流体流体动力学在宇宙学模拟中建模多相气体
Modeling multi-phase gases in cosmological simulations using compressible multi-fluid hydrodynamics
论文作者
论文摘要
星系中和周围的漫射培养基可以以多相状态存在:小的冷气云显着导致嵌入在压力平衡中的总质量,并具有更热,更漫射的体积填充成分。在宇宙学模拟中对这种多相状态进行建模构成了重大挑战,因为需要空间解析云以及相之间的相互作用。在本文中,我们提出了一种在宇宙学水动力学模拟中对这种气体态进行建模的新方法。我们使用移动网格有限体积法解决了可压缩的两流体水动力方程,并将相之间的质量,动量和能量交换项定义为操作员分解的源项。使用分层流模型,我们的实施能够在压力平衡中保持体积分数不连续至机器精度,从而可以治疗已解决的和未解决的多相流体。求解器在光滑的流体动力学问题上仍然准确地保持二阶。我们使用星际介质现有的两阶段模型的源和下沉项来证明这种类型的方法在银河形成模拟中的价值,将其与其有效的国家实施方程进行比较,并在未来的大型银河形成中讨论其优势。
The diffuse medium in and around galaxies can exist in a multi-phase state: small, cold gas clouds contributing significantly to the total mass embedded in pressure equilibrium with a hotter, more diffuse volume-filling component. Modeling this multi-phase state in cosmological simulations poses a significant challenge due to the requirements to spatially resolve the clouds and consequently the interactions between the phases. In this paper, we present a novel method to model this gas state in cosmological hydrodynamical simulations. We solve the compressible two-fluid hydrodynamic equations using a moving-mesh finite-volume method and define mass, momentum and energy exchange terms between the phases as operator-split source terms. Using a stratified flow model, our implementation is able to maintain volume fraction discontinuities in pressure equilibrium to machine precision, allowing for the treatment of both resolved and unresolved multi-phase fluids. The solver remains second order accurate on smooth hydrodynamics problems. We use the source and sink terms of an existing two-phase model for the interstellar medium to demonstrate the value of this type of approach in simulations of galaxy formation, compare it to its effective equation of state implementation, and discuss its advantages in future large-scale simulations of galaxy formation.