论文标题

人物驱动的主导/顺从地图(PDSM)生成教程

Persona-driven Dominant/Submissive Map (PDSM) Generation for Tutorials

论文作者

Green, Michael Cerny, Khalifa, Ahmed, Charity, M, Togelius, Julian

论文摘要

在本文中,我们提出了一种自动角色驱动的视频游戏教程级别的方法。教程级别是玩家可以探索和发现不同规则和游戏机制的场景。程序性角色可以指导发电机创建鼓励或阻止某些游戏风格行为的内容。在此系统中,我们使用程序角色来计算使用称为约束MAP-ELITE的质量多样性算法进化的水平的行为特征。进化地图的质量取决于其简单性:它越简单,越好。在这项工作中,我们表明,生成的地图可以强烈鼓励或阻止不同角色般的行为,从简单的解决方案到复杂的拼图级别,使其成为教程生成系统的理想候选人。

In this paper, we present a method for automated persona-driven video game tutorial level generation. Tutorial levels are scenarios in which the player can explore and discover different rules and game mechanics. Procedural personas can guide generators to create content which encourages or discourages certain playstyle behaviors. In this system, we use procedural personas to calculate the behavioral characteristics of levels which are evolved using the quality-diversity algorithm known as Constrained MAP-Elites. An evolved map's quality is determined by its simplicity: the simpler it is, the better it is. Within this work, we show that the generated maps can strongly encourage or discourage different persona-like behaviors and range from simple solutions to complex puzzle-levels, making them perfect candidates for a tutorial generative system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源