论文标题

基于神经歧管的尖峰神经网络,用于增强皮质内脑计算机界面数据

A Spiking Neural Network based on Neural Manifold for Augmenting Intracortical Brain-Computer Interface Data

论文作者

Zheng, Shengjie, Li, Wenyi, Qian, Lang, He, Chenggang, Li, Xiaojian

论文摘要

脑部计算机界面(BCIS),将大脑中的神经信号转化为控制外部设备的内部结构。但是,获得足够的培训数据既困难又有限。随着高级机器学习方法的出现,大脑计算机界面的能力已经像以前一样增强了,但是,这些方法需要大量的数据进行培训,因此需要数据增强可用的有限数据。在这里,我们使用尖峰神经网络(SNN)作为数据生成器。它被吹捧为下一代的neu-ral网络,被认为是针对一般人为智力的算法之一,因为它借用了来自生物逻辑神经元的神经信息处理。我们使用SNN生成可生物介入的神经尖峰信息,并符合原始神经数据中的固有模式。前实验表明该模型可以直接合成新的尖峰列车,从而提高了BCI解码器的概括能力。尖峰神经模型的输入和输出都是Spike信息,这是一种受脑启发的智力方法,将来可以更好地与BCI整合。

Brain-computer interfaces (BCIs), transform neural signals in the brain into in-structions to control external devices. However, obtaining sufficient training data is difficult as well as limited. With the advent of advanced machine learning methods, the capability of brain-computer interfaces has been enhanced like never before, however, these methods require a large amount of data for training and thus require data augmentation of the limited data available. Here, we use spiking neural networks (SNN) as data generators. It is touted as the next-generation neu-ral network and is considered as one of the algorithms oriented to general artifi-cial intelligence because it borrows the neural information processing from bio-logical neurons. We use the SNN to generate neural spike information that is bio-interpretable and conforms to the intrinsic patterns in the original neural data. Ex-periments show that the model can directly synthesize new spike trains, which in turn improves the generalization ability of the BCI decoder. Both the input and output of the spiking neural model are spike information, which is a brain-inspired intelligence approach that can be better integrated with BCI in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源