论文标题
使用对抗性学习的缺血性中风病变细分
Ischemic Stroke Lesion Segmentation Using Adversarial Learning
论文作者
论文摘要
缺血性中风是通过堵塞血管向大脑供应血管的堵塞而发生的。中风病变的细分对于改善诊断,结果评估和治疗计划至关重要。在这项工作中,我们提出了一个细分模型,具有对缺血性病变分割的对抗性学习。我们采用具有跳过连接和辍学的U-NET作为细分基线网络,而完全连接的网络(FCN)作为歧视网络。鉴别器网络由5个卷积层组成,然后是泄漏的relu和一个上采样层,以将输出重新降低到输入映射的大小。训练分割网络以及对抗网络可以检测并纠正地面图和分段产生的分割图之间的高阶不一致。我们利用三种急性计算机断层扫描(CT,DPWI,CBF)的急性计算机断层扫描(CT)灌注数据(CT)在2018年提供的灌注数据(缺血性中风病变分割)用于缺血性病变分割。通过训练的交叉验证,我们的模型达到了42.10%的骰子准确性,而测试数据的骰子精度为39%。
Ischemic stroke occurs through a blockage of clogged blood vessels supplying blood to the brain. Segmentation of the stroke lesion is vital to improve diagnosis, outcome assessment and treatment planning. In this work, we propose a segmentation model with adversarial learning for ischemic lesion segmentation. We adopt U-Net with skip connection and dropout as segmentation baseline network and a fully connected network (FCN) as discriminator network. Discriminator network consists of 5 convolution layers followed by leaky-ReLU and an upsampling layer to rescale the output to the size of the input map. Training a segmentation network along with an adversarial network can detect and correct higher order inconsistencies between the segmentation maps produced by ground-truth and the Segmentor. We exploit three modalities (CT, DPWI, CBF) of acute computed tomography (CT) perfusion data provided in ISLES 2018 (Ischemic Stroke Lesion Segmentation) for ischemic lesion segmentation. Our model has achieved dice accuracy of 42.10% with the cross-validation of training and 39% with the testing data.