论文标题
高质量黑暗摄影的双传感器计算摄像头
A Dual Sensor Computational Camera for High Quality Dark Videography
论文作者
论文摘要
在低光条件下捕获的视频遭受严重的噪音。各种努力已致力于图像/视频噪声抑制并取得了很大的进步。但是,在极度黑暗的情况下,广泛的光子饥饿会阻碍精确的噪声建模。取而代之的是,开发一个收集更多光子的成像系统是在低照明下捕获高质量视频的更有效方法。在本文中,我们建议构建双传感器摄像机,以在NIR波长中额外收集光子,并利用RGB和近红外(NIR)频谱之间的相关性,从嘈杂的黑暗视频对中进行高质量的重建。在硬件中,我们同时构建了一个紧凑的双传感器摄像头,可同时捕获RGB和NIR视频。在计算上,我们提出了一个双通道多帧注意网络(DCMAN),该网络使用空间 - 频谱先验来重建低光RGB和NIR视频。此外,我们构建了一个高质量的配对RGB和NIR视频数据集,基于该方法,该方法可以通过基于物理过程的CMOS噪声模型训练DCMAN模型轻松地应用于不同的传感器。关于合成视频和真实视频的实验都验证了这种紧凑的双传感器设计的性能以及黑暗摄像机中相应的重建算法的性能。
Videos captured under low light conditions suffer from severe noise. A variety of efforts have been devoted to image/video noise suppression and made large progress. However, in extremely dark scenarios, extensive photon starvation would hamper precise noise modeling. Instead, developing an imaging system collecting more photons is a more effective way for high-quality video capture under low illuminations. In this paper, we propose to build a dual-sensor camera to additionally collect the photons in NIR wavelength, and make use of the correlation between RGB and near-infrared (NIR) spectrum to perform high-quality reconstruction from noisy dark video pairs. In hardware, we build a compact dual-sensor camera capturing RGB and NIR videos simultaneously. Computationally, we propose a dual-channel multi-frame attention network (DCMAN) utilizing spatial-temporal-spectral priors to reconstruct the low-light RGB and NIR videos. In addition, we build a high-quality paired RGB and NIR video dataset, based on which the approach can be applied to different sensors easily by training the DCMAN model with simulated noisy input following a physical-process-based CMOS noise model. Both experiments on synthetic and real videos validate the performance of this compact dual-sensor camera design and the corresponding reconstruction algorithm in dark videography.