论文标题

NEUS:中性多新汇总,用于减轻框架偏差

NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias

论文作者

Lee, Nayeon, Bang, Yejin, Yu, Tiezheng, Madotto, Andrea, Fung, Pascale

论文摘要

媒体新闻框架偏见会增加政治两极分化并破坏公民社会。因此,对自动缓解方法的需求正在增长。我们提出了一项新任务,这是来自各种政治倾向的多个新闻文章的中立摘要,以促进平衡和公正的新闻阅读。在本文中,我们首先收集了一个新的数据集,说明了有关通过案例研究构架偏见的见解,并为任务提出了一个新的有效指标和模型(NEUS-title)。基于我们发现标题为框架偏差提供了一个很好的信号,我们提出了Neus标题,该标题从标题到文章中学习以层次顺序中和新闻内容。我们的层次多任务学习是通过使用标识符tokens(“ title =>”,“ actits =>”)依次将我们的层次数据对(标题,文章)格式化而实现的,并使用标准的负面log-log-likikelihoody目标来微调自动退缩解码器。然后,我们分析并指出其余的挑战和未来的方向。最有趣的观察之一是,神经NLG模型不仅可以使实际上不准确或无法验证的内容幻觉,而且还可以幻觉。

Media news framing bias can increase political polarization and undermine civil society. The need for automatic mitigation methods is therefore growing. We propose a new task, a neutral summary generation from multiple news articles of the varying political leanings to facilitate balanced and unbiased news reading. In this paper, we first collect a new dataset, illustrate insights about framing bias through a case study, and propose a new effective metric and model (NeuS-TITLE) for the task. Based on our discovery that title provides a good signal for framing bias, we present NeuS-TITLE that learns to neutralize news content in hierarchical order from title to article. Our hierarchical multi-task learning is achieved by formatting our hierarchical data pair (title, article) sequentially with identifier-tokens ("TITLE=>", "ARTICLE=>") and fine-tuning the auto-regressive decoder with the standard negative log-likelihood objective. We then analyze and point out the remaining challenges and future directions. One of the most interesting observations is that neural NLG models can hallucinate not only factually inaccurate or unverifiable content but also politically biased content.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源