论文标题

图形的无符号拉普拉斯人的最大主比例

Maximum principal ratio of the signless Laplacian of graphs

论文作者

Liu, Lele, Hu, Shengming, He, Changxiang

论文摘要

令$ g $为连接的图表,$ q(g)$是$ g $的无价laplacian。 $ q(g)$的主比率$γ(g)$是$ q(g)$的最大和最小条目的比率。在本文中,我们考虑了所有连接的订单$ n $中的最大主比率$γ(g)$,并表明,对于足够大的$ n $,极值图是通过识别到完整图的任何顶点的路径的末端顶点获得的风筝图。

Let $G$ be a connected graph and $Q(G)$ be the signless Laplacian of $G$. The principal ratio $γ(G)$ of $Q(G)$ is the ratio of the maximum and minimum entries of the Perron vector of $Q(G)$. In this paper, we consider the maximum principal ratio $γ(G)$ among all connected graphs of order $n$, and show that for sufficiently large $n$ the extremal graph is a kite graph obtained by identifying an end vertex of a path to any vertex of a complete graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源