论文标题
给定牛顿多边形的平面代数曲线的弹药公式
Plucker Formulas for Plane Algebraic Curves with a Given Newton Polygon
论文作者
论文摘要
让$ c $是带有牛顿多边形$ p $的通用复杂平面曲线。我们计算其拐点和咬合的数量(等效地,投影双曲线的奇异性$ c^\ vee $)。我们还证明$ c^\ vee $除了节点和cusps以外没有其他奇异性,多边形$ p $。
Let $C$ be a generic complex plane plane curve with a given Newton polygon $P$. We compute the number of its inflection points and bitangents (equivalently, the number of singularities of the projectively dual curve $C^\vee$). We also prove that $C^\vee$ has no singularities other than nodes and cusps for large enough polygons $P$.