论文标题

稳定的拓扑阶段过渡无对称指示,naznsb $ _ {1-x} $ bi $ _x $

Stable topological phase transitions without symmetry indications in NaZnSb$_{1-x}$Bi$_x$

论文作者

Jung, Jaemo, Kim, Dongwook, Kim, Youngkuk

论文摘要

我们研究Tetragonal Naznsb $ _ {1-x} $ bi $ _x $的拓扑相变,由化学成分$ x $驱动。值得注意的是,我们检查了没有对称指标的镜像Chern数字。执行第一原理计算以表明NAZNSB $ _ {1-x} $ bi $ _x $经验连续拓扑相变,由强$ \ Mathbb z_ {2} $ topological Index $ v $ c $ n {0} $ {0} $和两个镜面Chern Chern number $ unight $ n vumens $ _ {x} $ ________随着化学成分$ x $的增加,拓扑不变式($μ_{x}μ_{xy}ν_{0} $)从$(000)$,$(020)$,$(220)$,$(111)$(111)$ at $ x $ x $ x $ = 0.15、0.20,和0.53。开发了一个简化的低能有效模型,以检查镜面数量的变化,突出了观众狄拉克·费米斯在避免对称指标中的核心作用。我们的发现表明,naznsb $ _ {1-x} $ bi $ _ {x} $对于探索拓扑与对称性之间的相互作用的探索可能是令人兴奋的测试。

We study topological phase transitions in tetragonal NaZnSb$_{1-x}$Bi$_x$, driven by the chemical composition $x$. Notably, we examine mirror Chern numbers that change without symmetry indicators. First-principles calculations are performed to show that NaZnSb$_{1-x}$Bi$_x$ experiences consecutive topological phase transitions, diagnosed by the strong $\mathbb Z_{2}$ topological index $ν_{0}$ and two mirror Chern numbers $μ_{x}$ and $μ_{xy}$. As the chemical composition $x$ increases, the topological invariants ($μ_{x}μ_{xy}ν_{0}$) change from $(000)$, $(020)$, $(220)$, to $(111)$ at $x$ = 0.15, 0.20, and 0.53, respectively. A simplified low-energy effective model is developed to examine the mirror Chern number changes, highlighting the central role of spectator Dirac fermions in avoiding symmetry indicators. Our findings suggest that NaZnSb$_{1-x}$Bi$_{x}$ can be an exciting testbed for the exploration of the interplay between the topology and symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源