论文标题

阻尼的Strichartz估计和不可压缩的Euler- Maxwell系统

Damped Strichartz estimates and the incompressible Euler--Maxwell system

论文作者

Arsénio, Diogo, Houamed, Haroune

论文摘要

Euler- Maxwell系统描述了Inviscid等离子体的动力学。在这项工作中,我们考虑了这种系统的不可压缩的二维版本,并证明了全球弱解决方案的存在和唯一性,就光$ c \ in(c_0,\ infty)$的速度而言,对于一定的阈值$ c_0> 0 $,仅根据初始数据而言。特别是,条件$ c> c_0 $可确保等离子体的速度无需超过光速,并使我们能够分析奇异制度$ c \ to \ infty $。 流体速度的功能设置在于Yudovich的二维Euler方程解决方案的框架,而对电磁场的分析则取决于整个空间中Maxwell方程中的阻尼和分散现象之间的精制相互作用。通过强大的抽象方法的新开发,可以使我们能够将阻尼效应纳入各种现有估计值,从而实现了这一分析。该方法的使用是通过对几种分散系统(包括波和schrödinger方程)的降低strichartz估计值(包括终点案例)的推导,以及对热方程的最大规律性估计的。随后的抑制strichartz估计在同一系统上取代了先前现有的结果。

Euler--Maxwell systems describe the dynamics of inviscid plasmas. In this work, we consider an incompressible two-dimensional version of such systems and prove the existence and uniqueness of global weak solutions, uniformly with respect to the speed of light $c\in (c_0,\infty)$, for some threshold value $c_0>0$ depending only on the initial data. In particular, the condition $c>c_0$ ensures that the velocity of the plasma nowhere exceeds the speed of light and allows us to analyze the singular regime $c\to\infty$. The functional setting for the fluid velocity lies in the framework of Yudovich's solutions of the two-dimensional Euler equations, whereas the analysis of the electromagnetic field hinges upon the refined interactions between the damping and dispersive phenomena in Maxwell's equations in the whole space. This analysis is enabled by the new development of a robust abstract method allowing us to incorporate the damping effect into a variety of existing estimates. The use of this method is illustrated by the derivation of damped Strichartz estimates (including endpoint cases) for several dispersive systems (including the wave and Schrödinger equations), as well as damped maximal regularity estimates for the heat equation. The ensuing damped Strichartz estimates supersede previously existing results on the same systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源