论文标题

与交换性(CO)MONOID结构的对称单体类别的重写

Rewriting for Symmetric Monoidal Categories with Commutative (Co)Monoid Structure

论文作者

Milosavljevic, Aleksandar, Piedeleu, Robin, Zanasi, Fabio

论文摘要

弦图是对称单体类别的形态的图形表示。它们构成了直观和表现力的图形语法,该语法已在非常多样的领域中找到了应用,包括并发理论,量子计算,控制理论,机器学习,语言学和数字电路。弦图的重写理论依赖于组合解释作为对某些超图的双重解释的重写。如前所述,此解释中存在“张力”:为了使其听起来并完整,我们需要在字符串图(尤其是Frobenius代数结构)上添加结构,或者在双 - 孔子上的重写(导致'CONVEX'重写)上施加限制。从弦图的角度来看,在应用中施加完整的Frobenius结构可能并不总是自然的或可取的,这激发了我们对较弱需求的研究:交换性单体结构。在这项工作中,我们表征了字符串图重写模量可交换性单体方程,这是通过在适当的双静音重写HyperGraphs的概念中进行声音和完整的解释。

String diagrams are pictorial representations for morphisms of symmetric monoidal categories. They constitute an intuitive and expressive graphical syntax, which has found application in a very diverse range of fields including concurrency theory, quantum computing, control theory, machine learning, linguistics, and digital circuits. Rewriting theory for string diagrams relies on a combinatorial interpretation as double-pushout rewriting of certain hypergraphs. As previously studied, there is a `tension' in this interpretation: in order to make it sound and complete, we either need to add structure on string diagrams (in particular, Frobenius algebra structure) or pose restrictions on double-pushout rewriting (resulting in 'convex' rewriting). From the string diagram viewpoint, imposing a full Frobenius structure may not always be natural or desirable in applications, which motivates our study of a weaker requirement: commutative monoid structure. In this work we characterise string diagram rewriting modulo commutative monoid equations, via a sound and complete interpretation in a suitable notion of double-pushout rewriting of hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源