论文标题

聪明的视力和声音:慢性癌症疼痛数据集

Intelligent Sight and Sound: A Chronic Cancer Pain Dataset

论文作者

Ordun, Catherine, Cha, Alexandra N., Raff, Edward, Gaskin, Byron, Hanson, Alex, Rule, Mason, Purushotham, Sanjay, Gulley, James L.

论文摘要

在整个治疗过程中,癌症患者的慢性疼痛率很高。评估该患者人群的疼痛是心理和功能福祉的重要组成部分,因为它可能导致生活质量的快速恶化。面部疼痛检测中的现有工作通常在标签或方法方面缺乏,以阻止它们在临床上相关。本文介绍了第一个慢性癌症疼痛数据集,该数据集是作为智能视觉和声音(ISS)临床试验的一部分收集的,在临床医生的指导下,以帮助确保模型发现产生临床相关的结果。迄今为止收集的数据由29名患者,509个智能手机视频,189,999帧以及简短疼痛清单(BPI)采用的自我报告的情感和活动疼痛评分。使用静态图像和多模式数据来预测自我报告的疼痛水平,早期模型显示了可预测当今疼痛的当前方法之间的显着差距,并有改善的空间。由于面部图像固有的个人身份信息(PII)的特殊性质,该数据集将在国家卫生研究院(NIH)的指导和控制下发布。

Cancer patients experience high rates of chronic pain throughout the treatment process. Assessing pain for this patient population is a vital component of psychological and functional well-being, as it can cause a rapid deterioration of quality of life. Existing work in facial pain detection often have deficiencies in labeling or methodology that prevent them from being clinically relevant. This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial, guided by clinicians to help ensure that model findings yield clinically relevant results. The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores adopted from the Brief Pain Inventory (BPI). Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain today, with room for improvement. Due to the especially sensitive nature of the inherent Personally Identifiable Information (PII) of facial images, the dataset will be released under the guidance and control of the National Institutes of Health (NIH).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源