论文标题

基于外观运动语义表示一致性的视频异常检测框架

A Video Anomaly Detection Framework based on Appearance-Motion Semantics Representation Consistency

论文作者

Huang, Xiangyu, Zhao, Caidan, Wang, Yilin, Wu, Zhiqiang

论文摘要

视频异常检测是指偏离预期行为的事件的识别。由于培训中缺乏异常样本,视频异常检测成为一项非常具有挑战性的任务。现有方法几乎遵循重建或将来的框架预测模式。但是,这些方法忽略了样品的外观和运动信息之间的一致性,从而限制了它们的异常检测性能。异常仅发生在监视视频的移动前景中,因此,视频框架序列表达的语义和在异常检测中没有背景信息的光流式表达的语义应高度一致且对于异常检测而言是显着的。基于这个想法,我们提出了外观运动语义表示一致性(AMSRC),该框架使用正常数据的外观和运动语义表示一致性来处理异常检测。首先,我们设计了一个两流编码器,以编码正常样品的外观和运动信息表示形式,并引入约束,以进一步增强正常样品外观和运动信息之间特征语义的一致性,以便可以识别出具有较低一致性的外观和运动特征表征的异常样品。此外,可以使用较低的外观和运动特征的一致性来生成具有较大重建误差的预测帧,从而使异常更易于发现。实验结果证明了该方法的有效性。

Video anomaly detection refers to the identification of events that deviate from the expected behavior. Due to the lack of anomalous samples in training, video anomaly detection becomes a very challenging task. Existing methods almost follow a reconstruction or future frame prediction mode. However, these methods ignore the consistency between appearance and motion information of samples, which limits their anomaly detection performance. Anomalies only occur in the moving foreground of surveillance videos, so the semantics expressed by video frame sequences and optical flow without background information in anomaly detection should be highly consistent and significant for anomaly detection. Based on this idea, we propose Appearance-Motion Semantics Representation Consistency (AMSRC), a framework that uses normal data's appearance and motion semantic representation consistency to handle anomaly detection. Firstly, we design a two-stream encoder to encode the appearance and motion information representations of normal samples and introduce constraints to further enhance the consistency of the feature semantics between appearance and motion information of normal samples so that abnormal samples with low consistency appearance and motion feature representation can be identified. Moreover, the lower consistency of appearance and motion features of anomalous samples can be used to generate predicted frames with larger reconstruction error, which makes anomalies easier to spot. Experimental results demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源