论文标题

障碍贝叶斯线性回归:在线学习控制障碍条件的安全 - 关键系统的不确定系统的安全控制条件

Barrier Bayesian Linear Regression: Online Learning of Control Barrier Conditions for Safety-Critical Control of Uncertain Systems

论文作者

Brunke, Lukas, Zhou, Siqi, Schoellig, Angela P.

论文摘要

在这项工作中,我们考虑了为非线性不确定控制系统设计安全过滤器的问题。我们的目标是增加具有安全过滤器的任意控制器,以便确保总体闭环系统保持在给定的状态约束集内,称为安全。对于具有已知动力学的系统,控制屏障功能(CBF)提供了标量条件,用于确定系统是否安全。对于不确定的系统,已经提出了强大或自适应的CBF认证方法。但是,这些方法可以是保守的,也可以要求系统具有特定的参数结构。对于更通用的不确定系统,机器学习方法已被用来近似CBF条件。这些工作通常假定在部署之前对学习模块进行了足够的培训。学习期间的安全不能保证。我们提出了一种障碍贝叶斯线性回归(BBLR)方法,可确保对真正不确定系统的CBF条件进行安全的在线学习。我们假设名义系统和真实系统之间的误差是有界的,并利用了CBF条件的结构。我们表明,尽管系统和学习不确定性,我们的方法仍可以安全地扩展一组可认证的控制输入。使用二维摆稳定任务在模拟中证明了我们方法的有效性。

In this work, we consider the problem of designing a safety filter for a nonlinear uncertain control system. Our goal is to augment an arbitrary controller with a safety filter such that the overall closed-loop system is guaranteed to stay within a given state constraint set, referred to as being safe. For systems with known dynamics, control barrier functions (CBFs) provide a scalar condition for determining if a system is safe. For uncertain systems, robust or adaptive CBF certification approaches have been proposed. However, these approaches can be conservative or require the system to have a particular parametric structure. For more generic uncertain systems, machine learning approaches have been used to approximate the CBF condition. These works typically assume that the learning module is sufficiently trained prior to deployment. Safety during learning is not guaranteed. We propose a barrier Bayesian linear regression (BBLR) approach that guarantees safe online learning of the CBF condition for the true, uncertain system. We assume that the error between the nominal system and the true system is bounded and exploit the structure of the CBF condition. We show that our approach can safely expand the set of certifiable control inputs despite system and learning uncertainties. The effectiveness of our approach is demonstrated in simulation using a two-dimensional pendulum stabilization task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源