论文标题
Eulerian-Lagrangian runge-kutta有限量(EL-RK-FV)方法,用于解决对流和对流扩散方程
An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose a new Eulerian-Lagrangian Runge-Kutta finite volume method for numerically solving convection and convection-diffusion equations. Eulerian-Lagrangian and semi-Lagrangian methods have grown in popularity mostly due to their ability to allow large time steps. Our proposed scheme is formulated by integrating the PDE on a space-time region partitioned by approximations of the characteristics determined from the Rankine-Hugoniot jump condition; and then rewriting the time-integral form into a time differential form to allow application of Runge-Kutta (RK) methods via the method-of-lines approach. The scheme can be viewed as a generalization of the standard Runge-Kutta finite volume (RK-FV) scheme for which the space-time region is partitioned by approximate characteristics with zero velocity. The high-order spatial reconstruction is achieved using the recently developed weighted essentially non-oscillatory schemes with adaptive order (WENO-AO); and the high-order temporal accuracy is achieved by explicit RK methods for convection equations and implicit-explicit (IMEX) RK methods for convection-diffusion equations. Our algorithm extends to higher dimensions via dimensional splitting. Numerical experiments demonstrate our algorithm's robustness, high-order accuracy, and ability to handle extra large time steps.