论文标题

Qade:求解量子退火器的微分方程

Qade: Solving Differential Equations on Quantum Annealers

论文作者

Criado, Juan Carlos, Spannowsky, Michael

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a general method, called Qade, for solving differential equations using a quantum annealer. The solution is obtained as a linear combination of a set of basis functions. On current devices, Qade can solve systems of coupled partial differential equations that depend linearly on the solution and its derivatives, with non-linear variable coefficients and arbitrary inhomogeneous terms. We test the method with several examples and find that state-of-the-art quantum annealers can find the solution accurately for problems requiring a small enough function basis. We provide a Python package implementing the method at gitlab.com/jccriado/qade.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源