论文标题

基于线性关系

Idempotent linear relations

论文作者

Arias, Maria Laura, Contino, Maximiliano, Maestripieri, Alejandra, Marcantognini, Stefania

论文摘要

如果$ e^2 = E,则需要在希尔伯特空间上作用的线性关系$ e $,需要一系列子空间来表征给定的didempotent:$(\ mathrm {ran} \,e,e,e,\ mathrm {ran}(ran}(ran}(ran}(ran}(i-e)) $(\ mathrm {ker}(i-e),\ mathrm {ker} \,e,e,\ mathrm {mul} \,e)。$满足包含$ e^2 \ subseteq e $(sub-empotent)或$ e \ e \ e \ subseteq e^2 $(subseteq e^2 $(Super-demem)的关系。最后,研究了一个基于线性关系的伴随和闭合。

A linear relation $E$ acting on a Hilbert space is idempotent if $E^2=E.$ A triplet of subspaces is needed to characterize a given idempotent: $(\mathrm{ran} \, E, \mathrm{ran}(I-E), \mathrm{dom}\, E),$ or equivalently, $(\mathrm{ker}(I-E), \mathrm{ker}\, E, \mathrm{mul} \, E).$ The relations satisfying the inclusions $E^2 \subseteq E$ (sub-idempotent) or $E \subseteq E^2$ (super-idempotent) play an important role. Lastly, the adjoint and the closure of an idempotent linear relation are studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源