论文标题

使用压力数据的优化基于物联网生活方式疾病分类的混合解决方案

An optimized hybrid solution for IoT based lifestyle disease classification using stress data

论文作者

Tiwari, Sadhana, Agarwal, Sonali

论文摘要

压力,焦虑和神经质都是日常生活中的高风险健康状况。以前,压力水平是通过与人交谈并了解他们最近或过去的经历来确定的。通常,压力是由很久以前发生的发病率引起的,但有时是由未知因素触发的。这是一项具有挑战性且复杂的任务,但是最近的研究进展为自动化提供了许多机会。这些技术大多数的基本特征是电真皮活性(EDA)和心率值(HRV)。我们利用加速度计测量身体运动来解决这一挑战。提出的新方法采用了一项测试,该测试测量受试者的心电图(ECG),电流皮肤值(GSV),HRV值和身体运动,以提供低成本且节省时间的解决方案,用于使用网络物理系统在现代中检测现代的压力生活方式疾病。这项研究为生活方式疾病分类提供了一种新的混合模型,该模型减少了执行时间,同时选择了最佳的特征收集并提高了分类准确性。开发的方法能够通过使用WESAD(可穿戴压力和影响数据集)数据集来处理类不平衡问题。新模型使用网格搜索(GS)方法选择一组优化的超级参数集,它结合了基于相关系数的基于相关系数的递归功能消除(COC-RFE)方法来最佳特征选择和梯度提升作为估计器来对数据集进行分类,从而可以实现高准确性,并有助于智能,智能,准确,准确,准确,准确和高级系统。为了证明所提出方法的有效性和效用,将其性能与其他建立良好的机器学习模型的性能进行了比较。

Stress, anxiety, and nervousness are all high-risk health states in everyday life. Previously, stress levels were determined by speaking with people and gaining insight into what they had experienced recently or in the past. Typically, stress is caused by an incidence that occurred a long time ago, but sometimes it is triggered by unknown factors. This is a challenging and complex task, but recent research advances have provided numerous opportunities to automate it. The fundamental features of most of these techniques are electro dermal activity (EDA) and heart rate values (HRV). We utilized an accelerometer to measure body motions to solve this challenge. The proposed novel method employs a test that measures a subject's electrocardiogram (ECG), galvanic skin values (GSV), HRV values, and body movements in order to provide a low-cost and time-saving solution for detecting stress lifestyle disease in modern times using cyber physical systems. This study provides a new hybrid model for lifestyle disease classification that decreases execution time while picking the best collection of characteristics and increases classification accuracy. The developed approach is capable of dealing with the class imbalance problem by using WESAD (wearable stress and affect dataset) dataset. The new model uses the Grid search (GS) method to select an optimized set of hyper parameters, and it uses a combination of the Correlation coefficient based Recursive feature elimination (CoC-RFE) method for optimal feature selection and gradient boosting as an estimator to classify the dataset, which achieves high accuracy and helps to provide smart, accurate, and high-quality healthcare systems. To demonstrate the validity and utility of the proposed methodology, its performance is compared to those of other well-established machine learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源