论文标题
无监督的无源域适应的雅各布标准
Jacobian Norm for Unsupervised Source-Free Domain Adaptation
论文作者
论文摘要
无监督的来源(数据)自由域适应性(USFDA)旨在将知识从训练有素的源模型转移到相关但未标记的目标域。在这种情况下,所有需要源数据失败的常规适应方法。为了应对这一挑战,现有的USFDA将目标特征与隐藏在源模型中隐藏的潜在分布对齐来转移知识。但是,这些信息自然受到限制。因此,在这种情况下的一致性不仅困难,而且不足,这会降低目标概括性能。为了缓解当前USFDA的这一困境,我们有动力探索一种新的观点来提高他们的表现。为此,我们回顾了域适应性的起源,并首先根据模型平滑度绑定了新品牌目标概括误差。然后,遵循理论洞察力,将一般和模型平滑度引导的Jacobian Norm(JN)正常使用器设计并强加于目标域,以减轻这种困境。进行了广泛的实验以验证其有效性。在实施中,仅将几行代码添加到现有的USFDA中,我们就可以在各种基准数据集上获得卓越的结果。
Unsupervised Source (data) Free domain adaptation (USFDA) aims to transfer knowledge from a well-trained source model to a related but unlabeled target domain. In such a scenario, all conventional adaptation methods that require source data fail. To combat this challenge, existing USFDAs turn to transfer knowledge by aligning the target feature to the latent distribution hidden in the source model. However, such information is naturally limited. Thus, the alignment in such a scenario is not only difficult but also insufficient, which degrades the target generalization performance. To relieve this dilemma in current USFDAs, we are motivated to explore a new perspective to boost their performance. For this purpose and gaining necessary insight, we look back upon the origin of the domain adaptation and first theoretically derive a new-brand target generalization error bound based on the model smoothness. Then, following the theoretical insight, a general and model-smoothness-guided Jacobian norm (JN) regularizer is designed and imposed on the target domain to mitigate this dilemma. Extensive experiments are conducted to validate its effectiveness. In its implementation, just with a few lines of codes added to the existing USFDAs, we achieve superior results on various benchmark datasets.