论文标题

diffcloud:来自点云的真实到sim,具有可变形对象的可区分模拟和渲染

DiffCloud: Real-to-Sim from Point Clouds with Differentiable Simulation and Rendering of Deformable Objects

论文作者

Sundaresan, Priya, Antonova, Rika, Bohg, Jeannette

论文摘要

操纵可变形物体的研究通常在有限的方案范围内进行,因为在硬件上处理每种情况都需要大量精力。对各种形式的变形和相互作用的支持的现实模拟器具有加快新任务和算法的实验的潜力。但是,对于高度可变形的对象,将模拟器的输出与真实对象的行为保持一致是具有挑战性的。手动调整不是直观的,因此需要自动化方法。我们将这个对齐问题视为一个关节感知推理挑战,并演示了如何使用最近的神经网络体系结构成功地从真实点云中执行模拟参数推断。我们分析各种架构的性能,比较它们的数据和培训要求。此外,我们建议利用可区分的点云采样和可区分模拟,以显着减少实现对齐时间的时间。我们采用一种有效的方法来传播从点云到模拟网格的梯度,然后再延伸到物理模拟参数(例如质量和刚度)。具有高度变形对象的实验表明,我们的方法可以实现与实际对象行为的可比较或更好的对齐,同时减少将其实现所需的时间缩短而不是数量级。视频和补充材料可在https://diffcloud.github.io上找到。

Research in manipulation of deformable objects is typically conducted on a limited range of scenarios, because handling each scenario on hardware takes significant effort. Realistic simulators with support for various types of deformations and interactions have the potential to speed up experimentation with novel tasks and algorithms. However, for highly deformable objects it is challenging to align the output of a simulator with the behavior of real objects. Manual tuning is not intuitive, hence automated methods are needed. We view this alignment problem as a joint perception-inference challenge and demonstrate how to use recent neural network architectures to successfully perform simulation parameter inference from real point clouds. We analyze the performance of various architectures, comparing their data and training requirements. Furthermore, we propose to leverage differentiable point cloud sampling and differentiable simulation to significantly reduce the time to achieve the alignment. We employ an efficient way to propagate gradients from point clouds to simulated meshes and further through to the physical simulation parameters, such as mass and stiffness. Experiments with highly deformable objects show that our method can achieve comparable or better alignment with real object behavior, while reducing the time needed to achieve this by more than an order of magnitude. Videos and supplementary material are available at https://diffcloud.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源