论文标题
铁氟烷的多粒子碰撞动力学
Multiparticle Collision Dynamics for Ferrofluids
论文作者
论文摘要
详细的研究依赖于场的依赖场动力学和运输特性,需要有效的介质模拟方法,以解释铁水力动力学的波动。在这里,我们提出了一种针对铁体流体动力学和流动的新的介观模型,在那里我们将多粒子碰撞动力学方法融为一体,作为波动流体动力学方程的求解器,以与悬挂磁性纳米颗粒的随机磁化动力学。通过重现Poiseuille流中的磁性效果来验证该混合模型,从而在定量一致性中获得了与理论预测的旋转粘度。我们还说明了方形圆柱体周围流动问题的新方法。有趣的是,我们观察到,与在相同有效的雷诺数(相同有效的雷诺数)相比,当应用外部磁场时,在应用外部磁场时,再循环区域的长度增加,而在使用外部磁场时,铁氟烷的长度降低。热波动的存在和这种基于粒子的介观方法的灵活性为研究磁性流体的广泛流动现象提供了有前途的工具,当浸入铁液体中时,也可以作为模拟溶剂颗粒的有效方法。
Detailed studies of the intriguing field-dependent dynamics and transport properties of confined flowing ferrofluids require efficient mesoscopic simulation methods that account for fluctuating ferrohydrodynamics. Here, we propose such a new mesoscopic model for the dynamics and flow of ferrofluids, where we couple the multi-particle collision dynamics method as a solver for the fluctuating hydrodynamics equations to the stochastic magnetization dynamics of suspended magnetic nanoparticles. This hybrid model is validated by reproducing the magnetoviscous effect in Poiseuille flow, obtaining the rotational viscosity in quantitative agreement with theoretical predictions. We also illustrate the new method for the benchmark problem of flow around a square cylinder. Interestingly, we observe that the length of the recirculation region is increased whereas the drag coefficient is decreased in ferrofluids when an external magnetic field is applied, compared with the field-free case at the same effective Reynolds number. The presence of thermal fluctuations and the flexibility of this particle-based mesoscopic method provides a promising tool to investigate a broad range of flow phenomena of magnetic fluids and could also serve as an efficient way to simulate solvent effects when colloidal particles are immersed in ferrofluids.