论文标题

SMU-net:匹配脑肿瘤分割的u-net的样式匹配,缺失方式

SMU-Net: Style matching U-Net for brain tumor segmentation with missing modalities

论文作者

Azad, Reza, Khosravi, Nika, Merhof, Dorit

论文摘要

神经胶质瘤是原发性脑肿瘤最普遍的类型之一,占所有病例的30 \%以上,它们是从神经胶质茎或祖细胞中发展的。从理论上讲,大多数脑肿瘤可以完全通过使用磁共振成像(MRI)来识别。每种MRI模态都会提供有关人脑软组织的不同信息,并整合所有MRI的信息,将提供全面的数据,以准确分割神经胶质瘤,这对于患者的预后,诊断和确定最佳随访治疗至关重要。不幸的是,出于多种原因,MRI容易出现工件,这可能导致缺少一种或多种MRI模式。多年来,已经提出了各种策略来综合缺失的方式或弥补其对自动分割模型的影响。但是,这些方法通常无法对基础丢失的信息进行建模。在本文中,我们提出了一种与MRI图像上脑肿瘤分割的样式匹配的U-NET(SMU-NET)。我们的共同训练方法利用内容和样式匹配机制将信息从全模式网络提炼成缺失的模态网络。为此,我们将全模式和缺失模式数据编码为潜在空间,然后将表示空间分解为样式和内容表示形式。我们的样式匹配模块通过学习匹配函数以将信息和纹理特征从全模式路径传输到缺失模式路径,从而自适应地重新校准表示空间。此外,通过对共同信息进行建模,我们的内容模块超过了信息较少的特征,并根据歧视性语义特征重新校准表示空间。 Brats 2018数据集的评估过程显示出重大结果。

Gliomas are one of the most prevalent types of primary brain tumours, accounting for more than 30\% of all cases and they develop from the glial stem or progenitor cells. In theory, the majority of brain tumours could well be identified exclusively by the use of Magnetic Resonance Imaging (MRI). Each MRI modality delivers distinct information on the soft tissue of the human brain and integrating all of them would provide comprehensive data for the accurate segmentation of the glioma, which is crucial for the patient's prognosis, diagnosis, and determining the best follow-up treatment. Unfortunately, MRI is prone to artifacts for a variety of reasons, which might result in missing one or more MRI modalities. Various strategies have been proposed over the years to synthesize the missing modality or compensate for the influence it has on automated segmentation models. However, these methods usually fail to model the underlying missing information. In this paper, we propose a style matching U-Net (SMU-Net) for brain tumour segmentation on MRI images. Our co-training approach utilizes a content and style-matching mechanism to distill the informative features from the full-modality network into a missing modality network. To do so, we encode both full-modality and missing-modality data into a latent space, then we decompose the representation space into a style and content representation. Our style matching module adaptively recalibrates the representation space by learning a matching function to transfer the informative and textural features from a full-modality path into a missing-modality path. Moreover, by modelling the mutual information, our content module surpasses the less informative features and re-calibrates the representation space based on discriminative semantic features. The evaluation process on the BraTS 2018 dataset shows a significant results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源