论文标题

基于张量列车的等因几何分析,用于PDE近似依赖参数的几何形状

Tensor train based isogeometric analysis for PDE approximation on parameter dependent geometries

论文作者

Ion, Ion Gabriel, Loukrezis, Dimitrios, De Gersem, Herbert

论文摘要

这项工作是基于等几何分析(IGA)和张量列(TT)分解的数值求解器,用于在参数依赖性几何学上近似偏差方程(PDE)。首先,离散的Galerkin运算符以及固定几何配置的解决方案表示为张量,使用TT格式来降低其计算复杂性。通过考虑将几何配置控制的参数作为物理空间坐标旁边的其他维度来包括参数依赖项。通过在参数空间中引入张量产物基础扩展,可以轻松地将参数合并到TT-IGA解决方案框架中。因此,将离散的Galerkin运算符扩展以适应参数依赖性,从而获得包含参数依赖性的单个系统。直接以TT格式求解系统,并获得参数依赖性溶液的低级别表示。提出的TT-IGA求解器应用于几个测试用例,这些测试用例展示了其高度计算效率和代表参数依赖性IGA运算符和解决方案的巨大压缩比。

This work develops a numerical solver based on the combination of isogeometric analysis (IGA) and the tensor train (TT) decomposition for the approximation of partial differential equations (PDEs) on parameter-dependent geometries. First, the discrete Galerkin operator as well as the solution for a fixed geometry configuration are represented as tensors and the TT format is employed to reduce their computational complexity. Parametric dependencies are included by considering the parameters that control the geometry configuration as additional dimensions next to the physical space coordinates. The parameters are easily incorporated within the TT-IGA solution framework by introducing a tensor product basis expansion in the parameter space. The discrete Galerkin operators are accordingly extended to accommodate the parameter dependence, thus obtaining a single system that includes the parameter dependency. The system is solved directly in the TT format and a low-rank representation of the parameter-dependent solution is obtained. The proposed TT-IGA solver is applied to several test cases which showcase its high computational efficiency and tremendous compression ratios achieved for representing the parameter-dependent IGA operators and solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源