论文标题
自旋轨道耦合对化学键合的影响
Influence of spin-orbit coupling on chemical bonding
论文作者
论文摘要
通过密度功能理论计算,分析了自旋轨道相互作用对元素固体和同核二聚体化学键的影响。我们的结果采用高度精确的全电子全电力方法,代表了基准质量。比较元素固体的标量和全相关方法表明,自旋轨道相互作用可能会收缩或扩大所考虑材料的体积。对于AU,TL,I,BI,PO和HG获得了最大的体积变化,显示为1.0---7.6 \%之间的变化。使用紧密结合模型,我们显示双原子分子表明,这种效果的性质在于粘结和抗抗轨道耦合引入的粘结和抗抗轨道的角度重排。这样的角度重排在部分填充的$ p $ - 或$ d $ - 欧洲的重元中。最后,我们讨论了相对论对单层碘化物和过渡金属二核苷元中化学键的影响
The influence of spin-orbit interaction on chemical bonds in elemental solids and homonuclear dimers is analyzed by means of density-functional-theory calculations. Employing highly precise all-electron full-potential methodology, our results represent benchmark quality. Comparison of the scalar- and fully-relativistic approaches for elemental solids shows that the spin-orbit interaction may contract or expand the volume of the considered material. The largest variation of the volume is obtained for Au, Tl, I, Bi, Po and Hg, exhibiting changes between 1.0--7.6\%. Using the tight-binding model, we show for diatomic molecules that the nature of this effect lies in the angular rearrangement of bonding and antibonding orbitals introduced by spin-orbit coupling. Such an angular rearrangement appears in partially filled $p$- or $d$-orbitals in heavy elements. Finally, we discuss the impact of the relativistic effects on the chemical bonding in single-layer iodides and transition metal dichalcogenides