论文标题

通过基于查询的人工生成的搜索条件来检测异常模式

Detecting Outlier Patterns with Query-based Artificially Generated Searching Conditions

论文作者

Yu, Shuo, Xia, Feng, Sun, Yuchen, Tang, Tao, Yan, Xiaoran, Lee, Ivan

论文摘要

在社会计算时代,寻找有趣的网络模式或主题对于诸如决策智能,入侵检测,医学诊断,社交网络分析,虚假新闻识别,国家安全等的各个领域至关重要。在大型异构现实世界网络中尤其如此。在这项工作中,我们提出了一个有效的解决方案,用于通过以智能方式探索用户的查询来发现和对基于网络图案的人类行为模式进行排名。我们的方法利用了用户查询提供的语义,这又提供了对于更快检测至关重要的数学约束。我们建议一种基于用户查询生成查询条件的方法。特别是,我们使用节点之间的元路径来定义目标模式及其相似性,从而导致有效的主题发现和同时排名。使用节点之间的不同相似性度量,在现实世界的学术网络上进行了研究。实验结果表明,我们的方法可以识别有趣的基序,并且可以选择相似性度量。

In the age of social computing, finding interesting network patterns or motifs is significant and critical for various areas such as decision intelligence, intrusion detection, medical diagnosis, social network analysis, fake news identification, national security, etc. However, sub-graph matching remains a computationally challenging problem, let alone identifying special motifs among them. This is especially the case in large heterogeneous real-world networks. In this work, we propose an efficient solution for discovering and ranking human behavior patterns based on network motifs by exploring a user's query in an intelligent way. Our method takes advantage of the semantics provided by a user's query, which in turn provides the mathematical constraint that is crucial for faster detection. We propose an approach to generate query conditions based on the user's query. In particular, we use meta paths between nodes to define target patterns as well as their similarities, leading to efficient motif discovery and ranking at the same time. The proposed method is examined on a real-world academic network, using different similarity measures between the nodes. The experiment result demonstrates that our method can identify interesting motifs, and is robust to the choice of similarity measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源