论文标题
通过Dolbeault的同源物学的Holomorthic Koszul-Brylinski同源性
Holomorphic Koszul-Brylinski homology via Dolbeault cohomology
论文作者
论文摘要
我们使用Dolbeault的共同体来研究有关植物泊松歧管的Koszul-Brylinski同源性。我们获得了用于Hochschild同源性的Leray-Hirsch定理和Mayer-Vietoris序列Künneth定理用于Holomorphic Koszul-Brylinski同源性。特别是,我们通过我们以前在Dolbeault Colomology上的作品来显示围绕一般情况(\ emph {不一定是compact})的爆炸转换的霍明型koszul-brylinski同源性的一些关系。
We use the Dolbeault cohomology to investigate the Koszul-Brylinski homology on holomorphic Poisson manifolds. We obtain the Leray-Hirsch theorem for Hochschild homology and the Mayer-Vietoris sequence, Künneth theorem for holomorphic Koszul-Brylinski homology. In particular, we show some relations of holomorphic Koszul-Brylinski homologies around a blow-up transformation for the general case (\emph{not necessarily compact}) by our previous works on the Dolbeault cohomology.