论文标题

覆盖tracial $ \ mathrm {w}^*$ - 代数的熵

Covering entropy for types in tracial $\mathrm{W}^*$-algebras

论文作者

Jekel, David

论文摘要

我们通过自由概率和模型理论技术的合并来研究奇特$ \ mathrm {w}^*$ - 代数的嵌入到基质代数的超副作用中。 Jung隐含地,海斯通过渐近覆盖的voiculescu的微层面空间明确定义了$ 1 $结合的熵,也就是说,矩阵的空间$(x_1^{(n)},x_2^{(n)},x_2^{(n)},\ dots),与大约相同的$*$*$*$*$*$*$*的生成$(x_1,x_2,\ dots)$ $ \ mathrm {w}^*$ - 代数。我们研究了通过公式定义的微晶格空间的类似熵,这些公式不仅使用$*$ - 代数操作和痕迹,还使用Suprema和Infima,例如在Tracial $ \ Mathrm {W}^*$ - 代数的模型理论中出现,由Farah,Hart,Hart,Hart和Sherman和Sherman和Sherman发起。通过将新理论与原始$ 1 $结合的熵联系起来,我们表明,如果$ h(\ nathcal {n}:\ Mathcal {m})\ geq 0 $,则存在$ \ nathcal {m Mathcal {m} $的嵌入到Matrix ultrix ultrix ultrix ultraproduct $ \ mathcal中\ Mathcal {u}} m_n(\ Mathbb {c})$,以至于$ h(\ Mathcal {n}:\ Mathcal {q})$任意接近$ h(\ Mathcal {n}:\ Mathcal {m})$。我们推断出$ \ Mathcal {M} $的所有嵌入到$ \ Mathcal {Q} $中都是自动等价的,则$ \ Mathcal {M} $强烈$ 1 $ bunded,实际上具有$ h(\ Mathcal {M})\ leq 0 $。

We study embeddings of tracial $\mathrm{W}^*$-algebras into a ultraproduct of matrix algebras through an amalgamation of free probabilistic and model-theoretic techniques. Jung implicitly and Hayes explicitly defined $1$-bounded entropy through the asymptotic covering numbers of Voiculescu's microstate spaces, that is, spaces of matrix tuples $(X_1^{(N)},X_2^{(N)},\dots)$ having approximately the same $*$-moments as the generators $(X_1,X_2,\dots)$ of a given tracial $\mathrm{W}^*$-algebra. We study the analogous covering entropy for microstate spaces defined through formulas that use not only $*$-algebra operations and the trace, but also suprema and infima, such as arise in the model theory of tracial $\mathrm{W}^*$-algebras initiated by Farah, Hart, and Sherman. By relating the new theory with the original $1$-bounded entropy, we show that if $h(\mathcal{N}:\mathcal{M}) \geq 0$, then there exists an embedding of $\mathcal{M}$ into a matrix ultraproduct $\mathcal{Q} = \prod_{n \to \mathcal{U}} M_n(\mathbb{C})$ such that $h(\mathcal{N}:\mathcal{Q})$ is arbitrarily close to $h(\mathcal{N}:\mathcal{M})$. We deduce if all embeddings of $\mathcal{M}$ into $\mathcal{Q}$ are automorphically equivalent, then $\mathcal{M}$ is strongly $1$-bounded and in fact has $h(\mathcal{M}) \leq 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源