论文标题

主要的主要权利理想戒指

Prime Principal Right Ideal Rings

论文作者

Al-Shorman, Tamem, Bataineh, Malik

论文摘要

让R为unity $ 1 \ in R $的通勤戒指。在本文中,我们介绍了主要主体权利理想环(\ textbf {pprir})的概念,据说r的主要理想p是主要的主要权利理想(\ textbf {ppri}),由$ p = \ {ar {ar {ar {ar {r \ in r \} in r \} $。如果r的每个主要理想是主要的主权理想(\ textbf {ppri}),则据说r是主要的主要右右右右rift right right right ring(\ textbf {pprir})。如果r是一个域,则主要的主右右环r被称为主要主体右右右rift right rift right r。主要主体权利理想环(\ textbf {pprir})的几种属性和特征。

Let R be a commutative ring with unity $1\in R$. In this article, we introduce the concept of prime principal right ideal rings (\textbf{PPRIR}), A prime ideal P of R is said to be prime principal right ideal (\textbf{PPRI}) is given by $P =\{ ar : r\in R\}$ for some element a. The ring R is said to be prime principal right ideal ring (\textbf{PPRIR}) if every prime ideal of R is a prime principal right ideal (\textbf{PPRI}). A prime principal right ideal ring R is called a prime principal right ideal domain (\textbf{PPRID}) if R is a domain. Several properties and characteristics of prime principal right ideal ring (\textbf{PPRIR}).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源