论文标题

FBLS-快速折叠的BLS算法

fBLS -- a fast-folding BLS algorithm

论文作者

Shahaf, Sahar, Zackay, Barak, Mazeh, Tsevi, Faigler, Simchon, Ivashtenko, Oryna

论文摘要

我们提出了FBL,这是一种基于快速折叠算法(FFA)的新型快速折叠技术,用于寻找过境行星,该算法广泛用于Pulsar天文学。对于具有$ n $数据点的给定灯曲线,FBLS同时生产了所有binned lightcurves,以$ n_p $ abter $ n_p $试用期。对于由FBL产生的每个折叠曲线,该算法都会生成标准的BLS期间图和统计数据。执行的算术操作的数量为$ \ MATHCAL {o} \ big(n_p \ cdot \ log n_p \ big)$,而常规bls需要$ \ MATHCAL {o} \ big(n_p \ cdot n \ big)$操作。 FBL可用于检测小的岩石过境行星,其周期比一天短,该期间范围广泛。我们通过在开普勒主序列光弯曲中对具有超短缺时期的行星进行初步FBL搜索,从而证明了新算法的功能。此外,我们开发了一种简单的信号验证方案,用于审查候选行星。这次两阶段的初步搜索确定了所有已知的超短行星候选者,并找到了三个新的。

We present fBLS -- a novel fast-folding technique to search for transiting planets, based on the fast-folding algorithm (FFA), which is extensively used in pulsar astronomy. For a given lightcurve with $N$ data points, fBLS simultaneously produces all the binned phase-folded lightcurves for an array of $N_p$ trial periods. For each folded lightcurve produced by fBLS, the algorithm generates the standard BLS periodogram and statistics. The number of performed arithmetic operations is $\mathcal{O}\big(N_p\cdot\log N_p \big)$, while regular BLS requires $\mathcal{O}\big(N_p\cdot N\big)$ operations. fBLS can be used to detect small rocky transiting planets, with periods shorter than one day, a period range for which the computation is extensive. We demonstrate the capabilities of the new algorithm by performing a preliminary fBLS search for planets with ultra-short periods in the Kepler main-sequence lightcurves. In addition, we developed a simplistic signal validation scheme for vetting the planet candidates. This two-stage preliminary search identified all known ultra-short planet candidates and found three new ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源