论文标题
在Boussinesq的水波方程式上
On Boussinesq's equation for water waves
论文作者
论文摘要
一个半世纪前,J。Boussinesq得出了一个方程式,用于传播通道中的水波。尽管该方程对许多物理现象具有根本的重要性,但数学结果仍然很少。这样做的一个原因是方程式不足。在本文中,我们在BousSinesQ方程式上建立了几个结果。首先,通过解决相关的三阶光谱问题的直接和反问题,我们为初始值问题开发了反向散射变换(IST)方法。使用这种方法,我们建立了许多存在,独特性和爆炸结果。例如,IST方法使我们能够识别物理意义的全球解决方案,并为每种$ t> 0 $构造,这些解决方案在时间$ t $上恰好爆炸的解决方案。我们的方法还可以根据riemann-hilbert问题解决Boussinesq方程的初始值问题的解决方案。通过分析这一Riemann-Hilbert问题,我们到达了解决方案的渐近公式。我们在$(x,t)$ - 飞机中确定十个主要渐近部门;在这些扇区中的每个部门中,我们对前导渐近项的精确表达以及精确的误差估计。
A century and a half ago, J. Boussinesq derived an equation for the propagation of water waves in a channel. Despite the fundamental importance of this equation for a number of physical phenomena, mathematical results on it remain scarce. One reason for this is that the equation is ill-posed. In this paper, we establish several results on the Boussinesq equation. First, by solving the direct and inverse problems for an associated third-order spectral problem, we develop an Inverse Scattering Transform (IST) approach to the initial value problem. Using this approach, we establish a number of existence, uniqueness, and blow-up results. For example, the IST approach allows us to identify physically meaningful global solutions and to construct, for each $T > 0$, solutions that blow up exactly at time $T$. Our approach also yields an expression for the solution of the initial value problem for the Boussinesq equation in terms of the solution of a Riemann--Hilbert problem. By analyzing this Riemann--Hilbert problem, we arrive at asymptotic formulas for the solution. We identify ten main asymptotic sectors in the $(x,t)$-plane; in each of these sectors, we compute an exact expression for the leading asymptotic term together with a precise error estimate.