论文标题
对风力涡轮机操作和维护的人工智能的科学计量评估:过去,现在和未来
Scientometric Review of Artificial Intelligence for Operations & Maintenance of Wind Turbines: The Past, Present and Future
论文作者
论文摘要
近来,风能已成为一种高度有希望的可再生能源来源。但是,风力涡轮机经常遭受操作上的不一致,导致了运营和维护(O&M)的巨大成本和挑战。基于条件的监测(CBM)和涡轮机的性能评估/分析是确保有效的O&M计划和成本最小化的重要方面。在过去的十年中,以数据为导向的决策技术已经见证了风能行业中此类O&M任务的快速发展,从应用信号处理方法到2010年初的信号处理方法到人工智能(AI)技术,尤其是2020年的深度学习。在本文中,我们利用统计计算来介绍对AI的概念和主题的概念,以对AI的概念和主题审查,以提供AI的概念,以提供AI的概念,并提供了AI的概念,并提供了AI的概念,并提供了AI的概念,并提供了AI的概念性综述,数据驱动的决策。我们提供了对未来以及当前在数据可用性和质量方面的关键挑战,黑匣子 - 纽扣AI模型缺乏透明度的关键挑战,以及在部署模型以进行实时决策支持的问题以及克服这些问题的可能策略。我们希望对CBM的过去,现在和未来进行系统分析以及绩效评估可以鼓励更多的组织在O&M中采用数据驱动的决策技术,以使风能源更加可靠,从而有助于应对气候变化的全球努力。
Wind energy has emerged as a highly promising source of renewable energy in recent times. However, wind turbines regularly suffer from operational inconsistencies, leading to significant costs and challenges in operations and maintenance (O&M). Condition-based monitoring (CBM) and performance assessment/analysis of turbines are vital aspects for ensuring efficient O&M planning and cost minimisation. Data-driven decision making techniques have witnessed rapid evolution in the wind industry for such O&M tasks during the last decade, from applying signal processing methods in early 2010 to artificial intelligence (AI) techniques, especially deep learning in 2020. In this article, we utilise statistical computing to present a scientometric review of the conceptual and thematic evolution of AI in the wind energy sector, providing evidence-based insights into present strengths and limitations of data-driven decision making in the wind industry. We provide a perspective into the future and on current key challenges in data availability and quality, lack of transparency in black box-natured AI models, and prevailing issues in deploying models for real-time decision support, along with possible strategies to overcome these problems. We hope that a systematic analysis of the past, present and future of CBM and performance assessment can encourage more organisations to adopt data-driven decision making techniques in O&M towards making wind energy sources more reliable, contributing to the global efforts of tackling climate change.