论文标题

石墨烯量子点中的两通道电荷kondo物理

Two-channel charge-Kondo physics in graphene quantum dots

论文作者

Minarelli, Emma L., Rigo, Jonas B., Mitchell, Andrew K.

论文摘要

利用电荷kondo范式的纳米电子量子点设备已被确定为基本量子杂质模型的多功能和准确的模拟量子模拟器。特别是,连接到两个金属铅的杂化金属 - 触发器点意识到了两通道近托(2CK)模型,其中抑制了dot电荷假蛋白的临床筛选。在这里,我们认为从理论上考虑了由石墨烯组件制造的两通道电荷kondo设备,实现了2CK模型的伪模式。我们使用Wilson的数值重新归一化方法解决了该模型,并发现了丰富的相图作为点潜在耦合强度,通道不对称和潜在散射的函数。该系统的复杂物理通过其热力学特性,散射T-Matrix和实验可测量的电导来探索。我们发现,强耦合假PAP Kondo相持续存在在通道 - 对称的两通道环境中,而在通道对称的情况下,挫折导致了新型的量子相变。值得注意的是,尽管石墨烯中状态的密度消失了,但我们在沮丧的临界点处发现了在零温度下的有限线性电导,该温度是非Fermi液体类型的。我们的结果表明,石墨烯电荷kondo平台提供了访问多通道pseudogap kondo物理的独特可能性。

Nanoelectronic quantum dot devices exploiting the charge-Kondo paradigm have been established as versatile and accurate analog quantum simulators of fundamental quantum impurity models. In particular, hybrid metal-semiconductor dots connected to two metallic leads realize the two-channel Kondo (2CK) model, in which Kondo screening of the dot charge pseudospin is frustrated. Here, we consider theoretically a two-channel charge-Kondo device made instead from graphene components, realizing a pseudogapped version of the 2CK model. We solve the model using Wilson's Numerical Renormalization Group method, and uncover a rich phase diagram as a function of dot-lead coupling strength, channel asymmetry, and potential scattering. The complex physics of this system is explored through its thermodynamic properties, scattering T-matrix, and experimentally measurable conductance. We find that the strong coupling pseudogap Kondo phase persists in the channel-asymmetric two-channel context, while in the channel-symmetric case frustration results in a novel quantum phase transition. Remarkably, despite the vanishing density of states in the graphene leads at low energies, we find a finite linear conductance at zero temperature at the frustrated critical point, which is of non-Fermi liquid type. Our results suggest that the graphene charge-Kondo platform offers a unique possibility to access multichannel pseudogap Kondo physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源