论文标题
通过问题回答改进有效的对话插槽标签
Improved and Efficient Conversational Slot Labeling through Question Answering
论文作者
论文摘要
基于变压器的预审前的语言模型(PLMS)在大多数自然语言理解(NLU)任务中提供无与伦比的表现,包括一个问题回答(QA)任务。我们假设在对话NLU中也可以直接利用质量检查方法的改进。但是,对话框任务必须是\ textit {Repratatted}到质量检查任务。特别是,我们专注于建模和研究\ textIt {插槽标签}(SL),这是通过质量检查的NLU的关键组成部分,旨在提高其性能和效率,并使其更有效,并且可以更有效,并且可以更有力地使用有限的任务数据。为此,我们做出了一系列的贡献:1)我们演示了如何将质量检查的PLM应用于SL任务,达到新的最先进的表现,在这种低数据表中尤为明显。 2)我们建议通过自然语言来利用上下文信息,以解决模棱两可的价值观。 3)通过使用轻巧但有效的适配器模块,可以提高面向质量检查的微调的效率和紧凑性。 4)交易质量检查数据集的一些质量以其大小,我们尝试自动生成的质量检查数据集以进行质量调整,以达到更高的性能。最后,我们的分析表明,在PLM的支持下,我们的基于质量检查的新型老虎机标签模型达到了高数据制度的性能上限,呼吁在未来工作中更具挑战性和更细微的基准。
Transformer-based pretrained language models (PLMs) offer unmatched performance across the majority of natural language understanding (NLU) tasks, including a body of question answering (QA) tasks. We hypothesize that improvements in QA methodology can also be directly exploited in dialog NLU; however, dialog tasks must be \textit{reformatted} into QA tasks. In particular, we focus on modeling and studying \textit{slot labeling} (SL), a crucial component of NLU for dialog, through the QA optics, aiming to improve both its performance and efficiency, and make it more effective and resilient to working with limited task data. To this end, we make a series of contributions: 1) We demonstrate how QA-tuned PLMs can be applied to the SL task, reaching new state-of-the-art performance, with large gains especially pronounced in such low-data regimes. 2) We propose to leverage contextual information, required to tackle ambiguous values, simply through natural language. 3) Efficiency and compactness of QA-oriented fine-tuning are boosted through the use of lightweight yet effective adapter modules. 4) Trading-off some of the quality of QA datasets for their size, we experiment with larger automatically generated QA datasets for QA-tuning, arriving at even higher performance. Finally, our analysis suggests that our novel QA-based slot labeling models, supported by the PLMs, reach a performance ceiling in high-data regimes, calling for more challenging and more nuanced benchmarks in future work.