论文标题

通过几何哈希在高维处的流式设施位置

Streaming Facility Location in High Dimension via Geometric Hashing

论文作者

Czumaj, Artur, Filtser, Arnold, Jiang, Shaofeng H. -C., Krauthgamer, Robert, Veselý, Pavel, Yang, Mingwei

论文摘要

在Euclidean统一设施(UFL)中,输入是$ \ Mathbb {r}^d $中的一组客户,目标是放置设施以服务它们,以最大程度地降低开放设施的总成本,并连接客户。我们研究了动态几何流的设置,其中将客户作为一系列插入和删除的序列,在网格$ \ {1,\ ldots,δ\}^d $中,我们专注于\ emph {高维度},algorithm必须使用algorithm必须使用algorithm in olgorithm in $ d $ d cdot。 我们提出了一个基于重要性采样的新算法框架,仅使用$ \ mathrm {poly}(d \ cdot \logδ)$ space仅使用$ o(1)$ - ufl近似。该框架很容易在两个通过中实施,一个用于抽样点,另一个用于估计其贡献。在随机顺序的流上,我们可以通过分别使用流的两半扩展到一个通过。我们的主要结果,对于任意订单流,通过将两个通过以不同方式组合来计算$ o(d / \ log d)$ - 在一个通过中近似。这对先前需要空间$ \ exp(d)$的算法或仅保证$ o(d \ cdot \ log^2δ)$ - 近似值有所改善,因此,我们对高维度的算法是避免$ O(\logΔ)$的高维算法,这是对广泛使用的Quadtree Decodtree固有的近似值的因素。我们的改进是通过采用几何散列方案来实现的,该方案将$ \ mathbb {r}^d $映射到有界直径的桶中,其关键属性每一个小点的直径均已将其放在几个桶中。通过为此哈希应用替代绑定,我们还使用较大但仍在的sublinear Space $ o(n^ε)$获得$ O(1 /ε)$ - 近似值,其中$ n $是客户的数量。 我们通过显示$ 1.085 $ - APPROXIMATION需要在$ \ mathrm {poly}(d \ cdot \logδ)$中的空间指数来补充我们的结果。

In Euclidean Uniform Facility Location (UFL), the input is a set of clients in $\mathbb{R}^d$ and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the setting of dynamic geometric streams, where the clients are presented as a sequence of insertions and deletions of points in the grid $\{1,\ldots,Δ\}^d$, and we focus on the \emph{high-dimensional regime}, where the algorithm must use space polynomial in $d\cdot\logΔ$. We present a new algorithmic framework, based on importance sampling, for $O(1)$-approximation of UFL using only $\mathrm{poly}(d\cdot\logΔ)$ space. This framework is easy to implement in two passes, one for sampling points and the other for estimating their contribution. Over random-order streams, we can extend this to one pass by using the two halves of the stream separately. Our main result, for arbitrary-order streams, computes $O(d / \log d)$-approximation in one pass by combining the two passes differently. This improves upon previous algorithms that either need space $\exp(d)$ or only guarantee $O(d\cdot\log^2Δ)$-approximation, and therefore our algorithms for high dimension are the first to avoid the $O(\logΔ)$-factor in approximation that is inherent to the widely-used quadtree decomposition. Our improvement is achieved by employing a geometric hashing scheme that maps points in $\mathbb{R}^d$ into buckets of bounded diameter, with the key property that every point set of small-enough diameter is hashed into few buckets. By applying an alternative bound for this hashing, we also obtain an $O(1 / ε)$-approximation in one pass, using larger but still sublinear space $O(n^ε)$ where $n$ is the number of clients. We complement our results by showing $1.085$-approximation requires space exponential in $\mathrm{poly}(d\cdot\logΔ)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源