论文标题

镜子对称性在非亚伯利亚兰道的水平上

Mirror symmetry on levels of non-abelian Landau--Ginzburg orbifolds

论文作者

Ebeling, Wolfgang, Gusein-Zade, Sabir M.

论文摘要

我们认为Landau-Ginzburg Orbifolds的Berglund-Hübsch-Henningson-Takahashi双重性具有由某些对角线对称性和一些变量排列产生的对称组。我们研究了此类双对的Orbifold Euler特征,Orbifold Zeta函数和Orbifold电子功能。我们推测,即使在每个级别上,我们都会在这些不变的层之间获得镜像对称性,在这里我们将级别的置换类别称为排列的共轭类。我们通过为这些不变的每个不变给出部分结果来支持这种猜想。

We consider the Berglund-Hübsch-Henningson-Takahashi duality of Landau-Ginzburg orbifolds with a symmetry group generated by some diagonal symmetries and some permutations of variables. We study the orbifold Euler characteristics, the orbifold zeta functions and the orbifold E-functions of such dual pairs. We conjecture that we get a mirror symmetry between these invariants even on each level, where we call level the conjugacy class of a permutation. We support this conjecture by giving partial results for each of these invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源