论文标题

闭合产品和机器学习的无线电瞬态检测

Radio Transient Detection with Closure Products and Machine Learning

论文作者

Zhang, Xia, Diakogiannis, Foivos I., Dodson, Richard, Wicenec, Andreas

论文摘要

对于具有1-100秒的时间尺度的瞬态源,每次步骤的所有观察结果的标准化成像都变得不可能,因为在此观察时间范围内,大型现代干涉仪会产生大量的数据量。在这里,我们提出了一种基于机器学习的方法,并使用干涉闭合产物作为输入功能,以直接从空间频域中检测瞬态源候选,而无需成像。我们在噪声/瞬态/RFI事件的合成数据集上训练简单的神经网络分类器,我们构建了该数据集,以解决缺乏标记数据的问题。我们还使用模型的高参数辍学率来允许模型近似贝叶斯推断,并选择最佳的辍学率,以将后验预测与检测到的事件的实际潜在概率分布相匹配。模拟数据集上分类器的总体F1分数大于85 \%,信噪比为7 $σ$。用蒙特卡洛辍学的训练有素的神经网络的性能在半真实数据上进行了评估,其中包括模拟瞬态和真实噪声。该分类器准确地识别出最佳方差中可检测到的信号到噪声级别(高于4 $σ$)中瞬态信号的存在。我们的发现表明,仅使用模拟数据来构建可行的无线电瞬态分类器,即使在没有带注释的真实样本的目的是为了进行培训的目的时,也可以应用于实际观察结果。

For transient sources with timescales of 1-100 seconds, standardized imaging for all observations at each time step become impossible as large modern interferometers produce significantly large data volumes in this observation time frame. Here we propose a method based on machine learning and using interferometric closure products as input features to detect transient source candidates directly from the spatial frequency domain without imaging. We train a simple neural network classifier on a synthetic dataset of Noise/Transient/RFI events, which we construct to tackle the lack of labelled data. We also use the hyper-parameter dropout rate of the model to allow the model to approximate Bayesian inference, and select the optimal dropout rate to match the posterior prediction to the actual underlying probability distribution of the detected events. The overall F1-score of the classifier on the simulated dataset is greater than 85\%, with the signal-to-noise at 7$σ$. The performance of the trained neural network with Monte Carlo dropout is evaluated on semi-real data, which includes a simulated transient source and real noise. This classifier accurately identifies the presence of transient signals in the detectable signal-to-noise levels (above 4$σ$) with the optimal variance. Our findings suggest that a feasible radio transient classifier can be built up with only simulated data for applying to the prediction of real observation, even in the absence of annotated real samples for the purpose of training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源