论文标题
扩展器上的铁磁Potts模型的算法
Algorithms for the ferromagnetic Potts model on expanders
论文作者
论文摘要
我们提供算法,用于近似于最高度$ d $的图形上的铁磁$ q $ c $ color potts型号的分区功能。我们的主要贡献是在低温下具有膨胀条件的$ d $等级图的完全多项式时间近似方案(即远离订单disorder阈值)。扩展条件比以前的工作要弱得多。例如,HyperCube足够表现出的膨胀。主要的改进来自对标准聚合物模型的明显更清晰的分析。我们使用Karger算法的极端图理论和应用可能具有独立关注的削减。在低温图上近似划分函数是\#bis-hard,因此我们的算法可以看作是\ #bis的硬实例很少见的证据。我们还获得了有界度图的Gibbs唯一性区域中的有效算法。尽管我们的高温证明遵循更多标准的聚合物模型分析,但我们的结果始于最大的已知参数$ d $和$ q $。
We give algorithms for approximating the partition function of the ferromagnetic $q$-color Potts model on graphs of maximum degree $d$. Our primary contribution is a fully polynomial-time approximation scheme for $d$-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger's algorithm to count cuts that may be of independent interest. It is \#BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of \#BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high temperature proof follows more standard polymer model analysis, our result holds in the largest known range of parameters $d$ and $q$.