论文标题

通过共享处理的多任务调度

Multitasking Scheduling with Shared Processing

论文作者

Fu, Bin, Huo, Yumei, Zhao, Hairong

论文摘要

最近,多任务调度的问题在服务行业中引起了很多关注,在服务行业中,工人经常通过从一个任务切换到另一个任务来执行多个任务。 Hall,Leung和Li(离散应用数学2016)提出了共享的处理多任务计划模型,该模型使团队可以在处理常规计划的活动时继续处理主要任务。处理共享是通过将处理能力的一部分用于例行工作和剩余的分数(我们将其作为共享比率)分配给主要工作,从而实现了处理共享。 在本文中,我们将该模型推广到并行机器,并允许分配给常规作业的处理能力的一部分,以从一个变化到另一个。这些目标正在最小化makepan,并最大程度地减少了总完成时间。我们表明,对于这两个目标,都没有多项式时间近似算法,除非p = np,如果所有计算机的共享比率是任意的,则没有p = np。然后,我们考虑某些机器上共享比率具有恒定下限的问题。对于每个目标,我们分析经典调度算法及其变化的性能,然后在计算机数为常数时开发多项式时间近似方案。

Recently, the problem of multitasking scheduling has attracted a lot of attention in the service industries where workers frequently perform multiple tasks by switching from one task to another. Hall, Leung and Li (Discrete Applied Mathematics 2016) proposed a shared processing multitasking scheduling model which allows a team to continue to work on the primary tasks while processing the routinely scheduled activities as they occur. The processing sharing is achieved by allocating a fraction of the processing capacity to routine jobs and the remaining fraction, which we denote as sharing ratio, to the primary jobs. In this paper, we generalize this model to parallel machines and allow the fraction of the processing capacity assigned to routine jobs to vary from one to another. The objectives are minimizing makespan and minimizing the total completion time. We show that for both objectives, there is no polynomial time approximation algorithm unless P=NP if the sharing ratios are arbitrary for all machines. Then we consider the problems where the sharing ratios on some machines have a constant lower bound. For each objective, we analyze the performance of the classical scheduling algorithms and their variations and then develop a polynomial time approximation scheme when the number of machines is a constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源