论文标题

快速的约翰逊·林斯特劳斯的变换甚至更快

The Fast Johnson-Lindenstrauss Transform is Even Faster

论文作者

Fandina, Ora Nova, Høgsgaard, Mikael Møller, Larsen, Kasper Green

论文摘要

由Ailon和Chazelle(Sicomp'09)转换的开创性Johnson-Lindenstrauss(Fast JL)将一组$ n $嵌入$ d $ d $二维的Euclidean Space中的空间中的$ k = o(\ varepsilon^{-2}} \ varepsilon)$。快速JL变换支持计算$ O(d \ ln d +k \ ln^2 n)$时间的数据点的嵌入,其中$ d \ ln d $项来自带有$ d \ times d $ d $ hadamard matrix和$ k \ ln^2 n $ termplication的乘法,来自少量$ k \ k \ plication。尽管快速的JL转换已有十多年的历史,但它是$ \ varepsilon,d $和$ n $的许多权衡方面的最快降低技术之一。 在这项工作中,我们对快速JL变换进行了令人惊讶的新分析,表明嵌入时间中的$ k \ ln^2 n $项可以提高到$(k \ ln^2 n)/α$,用于$α=ω(\ min \ min \ \ min \ \ {\ varepsilon^{\ varepsilon^{ - 1} { - 1} { - 1} \ ln(1/\ ln)(1/\ n(1/\ \ n \ n)$ n(1/\ \ n \ n \ n \ n \ n(1/\ n \ n \ n)$ n(1/\ \ n \ n \ \ n(1/\ n)。通过使用更稀疏的矩阵来改进。我们还通过下限进行补充,表明我们的新分析实际上很紧张。

The seminal Fast Johnson-Lindenstrauss (Fast JL) transform by Ailon and Chazelle (SICOMP'09) embeds a set of $n$ points in $d$-dimensional Euclidean space into optimal $k=O(\varepsilon^{-2} \ln n)$ dimensions, while preserving all pairwise distances to within a factor $(1 \pm \varepsilon)$. The Fast JL transform supports computing the embedding of a data point in $O(d \ln d +k \ln^2 n)$ time, where the $d \ln d$ term comes from multiplication with a $d \times d$ Hadamard matrix and the $k \ln^2 n$ term comes from multiplication with a sparse $k \times d$ matrix. Despite the Fast JL transform being more than a decade old, it is one of the fastest dimensionality reduction techniques for many tradeoffs between $\varepsilon, d$ and $n$. In this work, we give a surprising new analysis of the Fast JL transform, showing that the $k \ln^2 n$ term in the embedding time can be improved to $(k \ln^2 n)/α$ for an $α= Ω(\min\{\varepsilon^{-1}\ln(1/\varepsilon), \ln n\})$. The improvement follows by using an even sparser matrix. We also complement our improved analysis with a lower bound showing that our new analysis is in fact tight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源