论文标题
熵和随机降低密度矩阵的主要特征值之间的确切分析关系
Exact analytical relation between the entropies and the dominant eigenvalue of random reduced density matrices
论文作者
论文摘要
在本文中,我们展示了如何通过在各种尺寸的子系统,纠缠差距以及不同程度的rényi熵的各种尺寸来获得的熵(包括von Neumann熵)与随机降低密度矩阵的不同程度相关的熵与其主要的特征值有关。分析结果是从分散的WishArt矩阵的随机矩阵理论(RMT)中得出的,并由计算机模拟支持。我们的研究与量子计算产生的纠缠之间的相关性提供了各种示例。
In this paper, we show how the entropy (including the von Neumann entropy obtained by tracing across various sizes of subsystems, the entanglement gap, as well as different degrees of Rényi entropy) of the random reduced density matrices are related to their dominant eigenvalue. Analytical results are deduced from Random Matrix Theory (RMT) for decentralized Wishart matrices and backed up by computer simulations. The correlation between our study and entanglement generated by quantum computing is provided with various examples.