论文标题
由磁化的Schwarzschild-Melvin黑洞支撑的非赤道标量环
Non-equatorial scalar rings supported by magnetized Schwarzschild-Melvin black holes
论文作者
论文摘要
最近已经证明,在爱因斯坦 - 马克斯韦 - 斯卡尔 - 高斯 - 高斯岩体田间理论中,磁化黑洞具有标量场与高斯 - 桥网曲面不变性的非微型负耦合可能会支持空间正常规则的标量型毛茸茸的配置。特别是,已经揭示了,对于Schwarzschild-Melvin黑洞的空间,近野合自发的标量现象的开始是由数值计算的无量纲临界关系$(bm)_ {\ text {crit}}} \ simeq0.971 $ s的数值计算的无量纲临界关系$(bm)_和时空的磁场。在本文中,我们使用分析技术证明,秃头Schwarzschild-Melvin黑洞的空间与毛茸茸的(标量)的黑孔解决方案之间的边界之间的边界是由精确的无尺寸关系的确切尺寸的关系来表征$(bm)_ {\ text {crit}} = \ sqrt {{{{\ sqrt {6} -2} -2} \ over {2 \ sqrt {6}}}}}}}}}}+\ sqrt {{{{\ sqrt {{\ sqrt {{\ sqrt {6}} $}有趣的是,我们证明了关键的无量纲磁参数$(BM)_ {\ text {Crit}} $对应于支持一对线性化的非中线耦合的薄标量环的磁性黑洞,这些标量为非临时的极性极性关系。 $(\ sin^2θ)_ {\ text {stalar-ring}} = {{690-72 \ sqrt {6} +4 \ SQRT {3258 \ sqrt {6} {6} -7158} -7158}}}}}}}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 789}}} <1 $。还可以证明,经典的允许角区域用于负耦合接近耦合的近距离自发标量表现象的磁化schwarzschild-melvin spaceTime仅限于黑洞杆,$ \ sin^2θ_{\ text {\ text {scalar}}} \ to $ bm bmpentch $ bmptention $ bmptenth
It has recently been demonstrated that magnetized black holes in composed Einstein-Maxwell-scalar-Gauss-Bonnet field theories with a non-minimal negative coupling of the scalar field to the Gauss-Bonnet curvature invariant may support spatially regular scalar hairy configurations. In particular, it has been revealed that, for Schwarzschild-Melvin black-hole spacetimes, the onset of the near-horizon spontaneous scalarization phenomenon is marked by the numerically computed dimensionless critical relation $(BM)_{\text{crit}}\simeq0.971$, where $\{M,B\}$ are respectively the mass and the magnetic field of the spacetime. In the present paper we prove, using analytical techniques, that the boundary between bald Schwarzschild-Melvin black-hole spacetimes and hairy (scalarized) black-hole solutions of the composed Einstein-Maxwell-scalar-Gauss-Bonnet theory is characterized by the exact dimensionless relation $(BM)_{\text{crit}}=\sqrt{{{\sqrt{6}-2}\over{2\sqrt{6}}}+\sqrt{{{\sqrt{6}-1}\over{2}}}}$ for the critical magnetic strength. Intriguingly, we prove that the critical dimensionless magnetic parameter $(BM)_{\text{crit}}$ corresponds to magnetized black holes that support a pair of linearized non-minimally coupled thin scalar rings that are characterized by the non-equatorial polar angular relation $(\sin^2θ)_{\text{scalar-ring}}={{690-72\sqrt{6}+4\sqrt{3258\sqrt{6}-7158}}\over{789}}<1$. It is also proved that the classically allowed angular region for the negative-coupling near-horizon spontaneous scalarization phenomenon of magnetized Schwarzschild-Melvin spacetimes is restricted to the black-hole poles, $\sin^2θ_{\text{scalar}}\to0$, in the asymptotic large-strength magnetic regime $BM\gg1$.