论文标题
基于完全连接的张量网络加权优化的高阶张量完成算法
A high-order tensor completion algorithm based on Fully-Connected Tensor Network weighted optimization
论文作者
论文摘要
张量完成的AIMES恢复丢失的数据,这是深度学习和信号处理中流行的关注之一。在高阶张量分解算法中,最近提出的完全连接的张量网络分解(FCTN)算法是最先进的。在本文中,通过利用完全连接的张量网络(FCTN)分解的出色表达,我们提出了一种名为“完全连接的张量子网络加权选择(FCTN-WOPT)”的新张量完成方法。该算法通过初始化FCTN分解的因子来执行完整的张量的组成。我们使用重量张量,完成的张量和不完整的张量一起构建损失功能,然后使用LBFGS梯度下降算法更新完成的张量,以减少空间记忆占用和加速迭代。最后,我们使用合成数据和真实数据(图像数据和视频数据)测试完成,结果显示了我们的FCTN-WOPT的高级性能,将其应用于高阶张量完成。
Tensor completion aimes at recovering missing data, and it is one of the popular concerns in deep learning and signal processing. Among the higher-order tensor decomposition algorithms, the recently proposed fully-connected tensor network decomposition (FCTN) algorithm is the most advanced. In this paper, by leveraging the superior expression of the fully-connected tensor network (FCTN) decomposition, we propose a new tensor completion method named the fully connected tensor network weighted optization(FCTN-WOPT). The algorithm performs a composition of the completed tensor by initialising the factors from the FCTN decomposition. We build a loss function with the weight tensor, the completed tensor and the incomplete tensor together, and then update the completed tensor using the lbfgs gradient descent algorithm to reduce the spatial memory occupation and speed up iterations. Finally we test the completion with synthetic data and real data (both image data and video data) and the results show the advanced performance of our FCTN-WOPT when it is applied to higher-order tensor completion.