论文标题

数字和炭相综合方法

Numerov and phase-integral methods for charmonium

论文作者

Esposito, Giampiero, Santorelli, Pietro

论文摘要

本文将NUMEROV和相位综合方法应用于研究结合魅力抗Charm Quarks状态状态的固定Schrodinger方程。前者是一种数值方法,非常适合二阶普通不同方程的矩阵形式,并且只要固定状态接收泰勒系列的扩展,就可以应用。后者是一种分析方法,它原则上甚至提供了固定的Schrodinger方程的精确溶液,并且非常适合应用匹配的渐近扩展和高阶量化条件。发现Numerov方法始终与Eichten等人的早期结果一致,而对相位综合量化条件的原始评估阐明了在哪些条件下,可以获得文献中先前关于高阶项的结果。

This paper applies the Numerov and phase-integral methods to the stationary Schrodinger equation that studies bound states of charm anti-charm quarks. The former is a numerical method well suited for a matrix form of second-order ordinary di erential equations, and can be applied whenever the stationary states admit a Taylor-series expansion. The latter is an analytic method that provides, in principle, even exact solutions of the stationary Schrodinger equation, and well suited for applying matched asymptotic expansions and higher order quantization conditions. The Numerov method is found to be always in agreement with the early results of Eichten et al., whereas an original evaluation of the phase-integral quantization condition clarifies under which conditions the previous results in the literature on higher-order terms can be obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源