论文标题
通过对比度学习估算细粒噪声模型
Estimating Fine-Grained Noise Model via Contrastive Learning
论文作者
论文摘要
图像Denoising取得了前所未有的进步,因为已经付出了巨大的努力来利用有效的深层辩护人。为了改善现实世界中的降解性能,在最近的趋势中使用了两种典型的解决方案:设计更好的噪声模型以综合更真实的训练数据,并估算噪声水平功能以指导非盲型deoisiser。在这项工作中,我们结合了噪声建模和估计,并提出了创新的噪声模型估计和噪声合成管道,以实现现实的噪声图像产生。具体而言,我们的模型以对比方式学习了具有细粒统计噪声模型的噪声估计模型。然后,我们使用估计的噪声参数来对摄像机特定的噪声分布进行建模,并合成逼真的嘈杂训练数据。对于我们的工作来说,最引人注目的是,通过校准多个传感器的噪声模型,我们的模型可以扩展以预测其他相机。换句话说,我们可以估计仅具有测试图像的未知传感器的摄像头噪声模型,而没有费力的校准框架或配对的嘈杂/清洁数据。拟议的管道通过最先进的真实噪声建模方法赋予了深层DeNoiser的竞争性能。
Image denoising has achieved unprecedented progress as great efforts have been made to exploit effective deep denoisers. To improve the denoising performance in realworld, two typical solutions are used in recent trends: devising better noise models for the synthesis of more realistic training data, and estimating noise level function to guide non-blind denoisers. In this work, we combine both noise modeling and estimation, and propose an innovative noise model estimation and noise synthesis pipeline for realistic noisy image generation. Specifically, our model learns a noise estimation model with fine-grained statistical noise model in a contrastive manner. Then, we use the estimated noise parameters to model camera-specific noise distribution, and synthesize realistic noisy training data. The most striking thing for our work is that by calibrating noise models of several sensors, our model can be extended to predict other cameras. In other words, we can estimate cameraspecific noise models for unknown sensors with only testing images, without laborious calibration frames or paired noisy/clean data. The proposed pipeline endows deep denoisers with competitive performances with state-of-the-art real noise modeling methods.