论文标题
计算机辅助提取脑小血管疾病的精选MRI标记:系统评价
Computer-Aided Extraction of Select MRI Markers of Cerebral Small Vessel Disease: A Systematic Review
论文作者
论文摘要
脑小血管疾病(CSVD)是衰老(包括痴呆症)认知障碍的主要血管。成像仍然是CSVD体内研究最有前途的方法。为了取代主观和费力的视觉评级方法,新兴的研究应用了最先进的人工智能来从MRI扫描中提取CSVD的成像生物标志物。我们的目的是总结已发表的计算机辅助方法,以检查CSVD的三种成像生物标志物,即脑微粒(CMB),扩张的周围空间(PVS)和假定血管起源的裂口。确定了71个经典图像处理,经典的机器学习和深度学习研究。与缝隙相比,对CMB和PV进行了更好的研究。尽管在本地测试数据集中已经实现了良好的性能指标,但在不同的研究或临床队列中尚未验证通用管道。转移学习和弱监督技术已应用于适应培训数据中的局限性。未来的研究可以考虑从多个来源汇总数据以增加多样性,并使用图像处理指标和与临床指标的关联验证方法的性能。
Cerebral small vessel disease (CSVD) is a major vascular contributor to cognitive impairment in ageing, including dementias. Imaging remains the most promising method for in vivo studies of CSVD. To replace the subjective and laborious visual rating approaches, emerging studies have applied state-of-the-art artificial intelligence to extract imaging biomarkers of CSVD from MRI scans. We aimed to summarise published computer-aided methods to examine three imaging biomarkers of CSVD, namely cerebral microbleeds (CMB), dilated perivascular spaces (PVS), and lacunes of presumed vascular origin. Seventy-one classical image processing, classical machine learning, and deep learning studies were identified. CMB and PVS have been better studied, compared to lacunes. While good performance metrics have been achieved in local test datasets, there have not been generalisable pipelines validated in different research or clinical cohorts. Transfer learning and weak supervision techniques have been applied to accommodate the limitations in training data. Future studies could consider pooling data from multiple sources to increase diversity, and validating the performance of the methods using both image processing metrics and associations with clinical measures.