论文标题
针对自动化机器学习的全面调查
A Comprehensive Survey on Automated Machine Learning for Recommendations
论文作者
论文摘要
深度推荐系统(DRS)对于当前的商业在线服务提供商至关重要,该提供商通过推荐根据用户的兴趣和偏好量身定制的项目来解决信息过载问题。它们具有前所未有的功能表示有效性以及对用户和项目之间非线性关系进行建模的能力。尽管有进步,但DRS模型与其他深度学习模型一样,采用了复杂的神经网络架构和其他通常由人类专家设计和调整的重要组成部分。本文将为开发DRS模型提供全面的自动化机器学习(AUTOML)摘要。我们首先为DRS模型和相关技术提供了Automl的概述。然后,我们讨论自动选择功能选择,功能嵌入,功能互动和模型培训的最先进的汽车方法。我们指出,现有的基于AUTOML的建议系统正在开发具有抽象搜索空间和有效搜索算法的多组分联合搜索。最后,我们讨论了吸引人的研究方向并总结了调查。
Deep recommender systems (DRS) are critical for current commercial online service providers, which address the issue of information overload by recommending items that are tailored to the user's interests and preferences. They have unprecedented feature representations effectiveness and the capacity of modeling the non-linear relationships between users and items. Despite their advancements, DRS models, like other deep learning models, employ sophisticated neural network architectures and other vital components that are typically designed and tuned by human experts. This article will give a comprehensive summary of automated machine learning (AutoML) for developing DRS models. We first provide an overview of AutoML for DRS models and the related techniques. Then we discuss the state-of-the-art AutoML approaches that automate the feature selection, feature embeddings, feature interactions, and model training in DRS. We point out that the existing AutoML-based recommender systems are developing to a multi-component joint search with abstract search space and efficient search algorithm. Finally, we discuss appealing research directions and summarize the survey.