论文标题
施密特对有限判别和小度的数量字段的数量数量的改进
An improvement on Schmidt's bound on the number of number fields of bounded discriminant and small degree
论文作者
论文摘要
我们证明,施密特的上限对$ n $的数字字段的数量和绝对判别物的数量小于x,价格为$ 6 \ leq n \ leq 94 $。我们通过改善和应用统一的限制对一元整数多项式的数量进行统一,并在先前的工作中证明了一个大正方形的界限和判别性。
We prove an improvement on Schmidt's upper bound on the number of number fields of degree $n$ and absolute discriminant less than X for $6 \leq n \leq 94$. We carry this out by improving and applying a uniform bound on the number of monic integer polynomials, having bounded height and discriminant divisible by a large square, that we proved in a previous work.