论文标题
顺磁性奥斯丁岩 - 有限磁性马氏体转化的相位场建模与力学和微磁学结合
Phase-field modeling of paramagnetic austenite-ferromagnetic martensite transformation coupled with mechanics and micromagnetics
论文作者
论文摘要
提出了一个三维相位模型,用于模拟磁性马塞西氏相变。该模型考虑了顺磁性立方奥斯汀对铁磁四方马氏体的转变,因为它发生在Ni2 MNGA(Ni2 MNGA)等磁性旋转合金中,并且基于Landau 2-3-4多项元素,其温度依赖性系数。通过将微磁能作为铁弹性域的顺序参数的函数插值来重新捕获顺磁性铁磁过渡。该模型通过有限元(FE)方法在实际空间中实现。 Martensitic状态中的FE模拟表明,该模型能够正确重新接收铁弹性和磁性微观结构以及外部刺激的影响。仿真结果表明,当应用磁场或压缩应力时,顺磁性的奥氏体到铁磁马氏体过渡向更高的温度转移。相位过渡温度转移对外部刺激强度的依赖性也被发现。磁电材料中相变的模拟对于能源有效的磁化冷却装置的开发引起了人们的兴趣。
A three-dimensional phase-field model is proposed for simulating the magnetic martensitic phase transformation. The model considers a paramagnetic cubic austenite to ferromagnetic tetragonal martensite transition, as it occurs in magnetic Heusler alloys like Ni2 MnGa, and is based on a Landau 2-3-4 polynomial with temperature dependent coefficients. The paramagnetic-ferromagnetic transition is recaptured by interpolating the micromagnetic energy as a function of the order parameter for the ferroelastic domains. The model is numerically implemented in real space by finite element (FE) method. FE simulations in the martensitic state show that the model is capable to correctly recapture the ferroelastic and -magnetic microstructures, as well as the influence of external stimuli. Simulation results indicate that the paramagnetic austenite to ferromagnetic martensite transition shifts towards higher temperatures when a magnetic field or compressive stress is applied. The dependence of the phase transition temperature shift on the strength of the external stimulus is uncovered as well. Simulation of the phase transition in magnetocaloric materials is of high interest for the development of energy-efficient magnetocaloric cooling devices.