论文标题
参数化量子电路的示意分析
Diagrammatic Analysis for Parameterized Quantum Circuits
论文作者
论文摘要
量子算法和电路的示意图为其设计和分析提供了新颖的方法。在这项工作中,我们将ZX-Calculus的扩展描述为特别适合参数化的量子电路,特别是用于计算可观察到的期望值作为或固定参数的函数,这些函数是固定参数的函数,这些算法是从组合优化到量子化学的各种应用中的重要算法量。我们为此设置提供了几个新的ZX-DIAGR重写规则和概括。特别是,我们提供了正式的规则,以处理ZX-Dagram的线性组合,其中必须跟踪每个图的相对复杂评估量表因子,与大多数先前研究的单个图形实现相反,这些系数可以有效地被忽略。这使我们可以直接导入一个有用的关系,从操作员分析到ZX-Calculus设置,包括因果锥和量子门换向规则。我们证明了图解方法通过考虑文献中的几个Ansatze,包括对硬件有效的Ansatze和Qaoa的实现,为算法结构和性能提供了有用的见解。我们发现,通过使用图表表示,不同Ansatze的计算可以变得更加直观,并且可能比通过替代手段更容易系统地接近。最后,我们概述了图解方法如何有助于设计和研究新的,更有效的量子电路Ansatze。
Diagrammatic representations of quantum algorithms and circuits offer novel approaches to their design and analysis. In this work, we describe extensions of the ZX-calculus especially suitable for parameterized quantum circuits, in particular for computing observable expectation values as functions of or for fixed parameters, which are important algorithmic quantities in a variety of applications ranging from combinatorial optimization to quantum chemistry. We provide several new ZX-diagram rewrite rules and generalizations for this setting. In particular, we give formal rules for dealing with linear combinations of ZX-diagrams, where the relative complex-valued scale factors of each diagram must be kept track of, in contrast to most previously studied single-diagram realizations where these coefficients can be effectively ignored. This allows us to directly import a number useful relations from the operator analysis to ZX-calculus setting, including causal cone and quantum gate commutation rules. We demonstrate that the diagrammatic approach offers useful insights into algorithm structure and performance by considering several ansatze from the literature including realizations of hardware-efficient ansatze and QAOA. We find that by employing a diagrammatic representation, calculations across different ansatze can become more intuitive and potentially easier to approach systematically than by alternative means. Finally, we outline how diagrammatic approaches may aid in the design and study of new and more effective quantum circuit ansatze.