论文标题
Gleason问题在一类有界伪共元域上的解决性
Solvability of the Gleason problem on a class of bounded pseudoconvex domains
论文作者
论文摘要
我们表明,如果有界的pseudoconvex域满足有限的$ \ bar {\ partial} $问题的解决性,则有限地生成了域中有限的全态函数的理想。我们还证明了具有足够光滑边界的有界假子共晶域的主要结果的平滑类似物,并考虑了伯格曼空间案例。
We show that if a bounded pseudoconvex domain satisfies the solvability of the bounded $\bar{\partial}$ problem, then the ideal of bounded holomorphic functions vanishing at a point in the domain is finitely generated. We also prove a smooth analog of the main result for bounded pseudoconvex domains with a sufficiently smooth boundary and also consider the Bergman space case.